Key paths to innovation


Projects co-financed by the ERDF under the Operational Programme for Smart Growth 2014-2020:


The overall objective of the project ‘Research and development of new technologies for the evolution of quartz agglomerates’ is to develop innovative quartz agglomerates, with multiple design possibilities, versatility in obtaining new properties, better productivity and quality of the end product, as well as greater durability of the materials, even in extreme conditions, in order to achieve a clear differentiation and improvement of the company’s competitiveness. To this end, three main lines of action are being addressed: research into surface technology, the development of new formulations and the development of technological processes for the production of quartz agglomerates.

The overall objective of the project ‘New Dekton® technology and formulations to develop new effects, properties and advanced products’ is to research and learn about this new material; to develop the technology to obtain new aesthetic effects and valuable properties in both surface and volume, including the development of products with a polished design and finish; to develop new formulations to improve its properties and optimise the process; to develop new characterisation and control systems; and to create products both in 3D and in extra-large thicknesses, in order to offer new special applications.

The ‘Silestone® Mixing and Shaping’ project aims to research and develop new Silestone® formulations that bring groundbreaking properties and aspects to the quartz agglomerate market by incorporating highly modified industrial mixing and shaping operations so that the new properties and effects can be applied to the entire volume of the material.

The ‘Dekton® advanced decoration systems’ project seeks to research and develop a new process technology for Dekton® to achieve high-resolution and synchronised volume decoration, as well as new surface textures which, when combined, will make it possible to obtain a product that is closer to natural stone.

The overall objective of the project ‘New properties in materials using technology to generate, apply and integrate functionalised surface layers’ focuses on the research and development of new highly durable properties in materials used for highly demanding applications through a novel technology for the formulation, application and generation of functionalised layers of different physico-chemical nature and through their integration by different routes inside the most superficial structure of the material.

The main purpose of the EOCENE project is to formulate, develop and validate new composite materials where all their components are of renewable sources: bio-based thermosetting resins (epoxy, polyester and vinylester) and fillers (minerals and carbon or glass fibres). In addition, reactive products (e.g. solvents and diluents) will be generated from renewable natural sources. The project will develop and implement advanced waste recovery and recycling strategies (disruptive innovations) for composite materials derived from the aeronautics, construction and surface (architecture) industries such as: resins, aggregates and fibres, both glass and carbon.

Projects co-financed by the ERDF under the Operational Programme for R&D&i by and for the benefit of enterprises – Technology Fund 2007-2013.


The main purpose of the project ‘Research and development of new technology for digital transformation in innovative surfaces’ is to develop new technologies and information systems applied to the company’s products, processes and services. A new industrial model will be defined in which the means of production, supply and distribution systems are connected and customer service is digital.

The overall objective of the project ‘Silestone® Simulation System’ lies in the development of a simulation tool or predictive model for the formulation of new Silestone® patterns, which makes it possible to know the behaviour of the material throughout the production process and its useful life, once it leaves the factory and is put in place, based on a series of defined key technical features.

The overall objective of the project ‘Development of advanced technical performance and special Dekton® applications’ is to investigate Dekton®’s technical limitations in order to create a product with improved properties and a more efficient production process. To do so, an investigation will be carried out through two perspectives: the formulation of the material and the process parameters, thus understanding the influence of both on the final properties of the material.

The project ‘New investment to develop and transform quartz agglomerates’ aims to fundamentally transform the manufacturing process of quartz agglomerates through the incorporation of innovative technology, which is the result of the company’s production experience, the collaboration with leading technology suppliers, as well as the research work conducted by a specialised R&D&I team, which are the perfect complement when designing the necessary technology to improve the company’s competitiveness at an international level.

Energy efficiency

Projects co-financed by the ERDF under the Operational Programme for Smart Growth 2014-2020:


The project ‘Improvement of energy efficiency in the calibration and polishing process on line 1 of the Silestone I plant’ consists of the replacement of two calibration and polishing machines in line 1 of the SILESTONE I plant, located in the Cantoria plant (Almería), in order to ensure better quality of the end product and reduce the current reprocessing due to faults in the slabs, compared to conventional technology, with the corresponding reduction in energy consumption.

The project “Improving energy efficiency in the calibration and polishing process in line 2 of the Silestone plant” consists in replacing two calibrators and two polishers in the second line of the SILESTONE plant, located in Cantoria, Almeria, with the goal of achieving a higher quality final product and reduce the current reprocess, which is a consequence of failures in the slabs in respect to the conventional technology with the corresponding reduction when talking about energy consumption.

Projects co-financed by the ERDF under the Operational Programme for Smart Growth 2014-2020:


The project ‘Heat recovery at the Cantoria factory of COSENTINO S.A.U.’ involves the installation of a heat recovery system for the furnaces of the Dekton® production line at the Cantoria plant (Almería) in order to improve the energy efficiency of the production process.

Total investment: 2,582,826.97

Aid amount: 774,848.09€

Energy savings: 1,158.56 toe/year

The project ‘Improvement of energy efficiency in ancillary facilities and lighting’ consists of replacing the compressors of the Silestone 2 and Mosaics production facilities at the Cantoria plant (Almería) with variable speed compressors.

Furthermore, the intention is to replace the existing exterior and interior lighting of several warehouses in the Cantoria Industrial Park (Almería) with LED lighting.

Total investment: 252,654.84€

Aid amount: 42,937.38€

Energy savings: 24.03 toe/year



The aim of the project is the fundamental transformation of the overall production processes, which is essential to maintain competitiveness and global leadership in the production of innovative surfaces for architecture and design.

The company’s policy also encompasses the search for ever more ambitious solutions that allow it to maintain its products in a leading position, always offering its customers innovative products with the highest performance and quality.